Les formations Machine Learning

Les formations Machine Learning

L'apprentissage automatique ou apprentissage statistique, champ d'étude de l'intelligence artificielle, concerne la conception, l'analyse, le développement et l'implémentation de méthodes permettant à une machine (au sens large) d'évoluer par un processus systématique, et ainsi de remplir des tâches difficiles ou problématiques à remplir par des moyens algorithmiques plus classiques.

Nos Clients témoignent

★★★★★
★★★★★

Plans de cours Machine Learning

Title
Duration
Overview
Title
Duration
Overview
7 hours
Overview
Ce cours a été créé pour les responsables, les architectes de solutions, les responsables de l’innovation, les directeurs techniques, les architectes de logiciels et toute personne intéressée par un aperçu de l’intelligence artificielle appliquée et les prévisions les plus proches pour son développement.
28 hours
Overview
Dans cette formation en direct, les participants apprendront à appliquer des techniques d'apprentissage automatique et des outils pour résoudre les problèmes du monde réel dans le secteur bancaire R sera utilisé comme langage de programmation Les participants apprennent d'abord les principes clés, puis mettent leurs connaissances en pratique en construisant leurs propres modèles d'apprentissage automatique et en les utilisant pour réaliser un certain nombre de projets en direct Public Développeurs Les scientifiques de données Professionnels de la banque avec un bagage technique Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
28 hours
Overview
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmés L'apprentissage en profondeur est un sous-domaine de l'apprentissage automatique qui utilise des méthodes basées sur l'apprentissage de représentations de données et de structures telles que les réseaux de neurones R est un langage de programmation populaire dans l'industrie financière Il est utilisé dans des applications financières allant des principaux programmes d'échange aux systèmes de gestion des risques Dans cette formation en direct, les participants apprendront comment mettre en œuvre des modèles d'apprentissage en profondeur pour la finance en utilisant le R au fur et à mesure de la création d'un modèle de prédiction du prix des actions À la fin de cette formation, les participants seront en mesure de: Comprendre les concepts fondamentaux de l'apprentissage en profondeur Apprenez les applications et les utilisations de l'apprentissage en profondeur en finance Utilisez R pour créer des modèles d'apprentissage en profondeur pour la finance Construire son propre modèle de prédiction du prix des actions d'apprentissage en profondeur en utilisant R Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
28 hours
Overview
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmés R est un langage de programmation populaire dans l'industrie financière Il est utilisé dans des applications financières allant des principaux programmes d'échange aux systèmes de gestion des risques Dans cette formation en direct, les participants apprendront à appliquer des techniques d'apprentissage automatique et des outils pour résoudre les problèmes du monde réel dans l'industrie de la finance R sera utilisé comme langage de programmation Les participants apprennent d'abord les principes clés, puis mettent leurs connaissances en pratique en construisant leurs propres modèles d'apprentissage automatique et en les utilisant pour réaliser un certain nombre de projets d'équipe À la fin de cette formation, les participants seront en mesure de: Comprendre les concepts fondamentaux de l'apprentissage automatique Apprenez les applications et les utilisations de l'apprentissage automatique en finance Développer sa propre stratégie de trading algorithmique en utilisant l'apprentissage automatique avec R Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Overview
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmés Python est un langage de programmation connu pour sa syntaxe et sa lisibilité Il offre une excellente collection de bibliothèques et de techniques éprouvées pour développer des applications d'apprentissage automatique Dans cette formation en direct, les participants apprendront à appliquer des techniques d'apprentissage automatique et des outils pour résoudre les problèmes du monde réel dans l'industrie de la finance Les participants apprennent d'abord les principes clés, puis mettent leurs connaissances en pratique en construisant leurs propres modèles d'apprentissage automatique et en les utilisant pour réaliser un certain nombre de projets d'équipe À la fin de cette formation, les participants seront en mesure de: Comprendre les concepts fondamentaux de l'apprentissage automatique Apprenez les applications et les utilisations de l'apprentissage automatique en finance Développer sa propre stratégie de trading algorithmique en utilisant l'apprentissage automatique avec Python Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
28 hours
Overview
Deep Learning for NLP permet à une machine d'apprendre un traitement de langage simple à complexe Parmi les tâches actuellement possibles figurent la traduction de la langue et la génération de légendes pour les photos DL (Deep Learning) est un sous-ensemble de ML (Machine Learning) Python est un langage de programmation populaire qui contient des bibliothèques pour Deep Learning for NLP Dans cette formation en ligne, les participants apprendront à utiliser les bibliothèques Python pour le traitement automatique du langage naturel (NLP) en créant une application qui traite un ensemble d'images et génère des légendes À la fin de cette formation, les participants seront en mesure de: Concevoir et coder DL pour NLP en utilisant des bibliothèques Python Créer un code Python qui lit une collection substantielle d'images et génère des mots-clés Créer un code Python qui génère des légendes à partir des mots clés détectés Public Programmeurs ayant un intérêt pour la linguistique Les programmeurs qui cherchent une compréhension de la PNL (traitement du langage naturel) Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
14 hours
Overview
Dans Python Machine Learning, la fonction de synthèse de texte est capable de lire le texte d'entrée et de produire un résumé de texte Cette fonctionnalité est disponible depuis la ligne de commande ou sous la forme d'une API / bibliothèque Python Une application passionnante est la création rapide de résumés exécutifs; ceci est particulièrement utile pour les organisations qui ont besoin d'examiner de grandes quantités de données textuelles avant de générer des rapports et des présentations Dans cette formation en ligne, les participants apprendront à utiliser Python pour créer une application simple qui génère automatiquement un résumé du texte saisi À la fin de cette formation, les participants seront en mesure de: Utilisez un outil de ligne de commande qui résume le texte Concevoir et créer du code de synthèse de texte en utilisant des bibliothèques Python Évaluer trois bibliothèques de résumés Python: sumy 070, pysummarization 104, readless 1017 Public Développeurs Data Scientists Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
35 hours
Overview
Ce cours commence par vous donner des connaissances conceptuelles dans les réseaux de neurones et généralement dans l'algorithme d'apprentissage automatique, l'apprentissage en profondeur (algorithmes et applications) Partie 1 (40%) de cette formation est plus axée sur les fondamentaux, mais vous aidera à choisir la bonne technologie: TensorFlow, Caffe, Theano, DeepDrive, Keras, etc La partie 2 (20%) de cette formation présente Theano, une bibliothèque de pythons qui facilite l'écriture de modèles d'apprentissage en profondeur La partie 3 (40%) de la formation serait largement basée sur l'API Tensorflow 2nd Generation de la bibliothèque logicielle open source de Google pour Deep Learning Les exemples et handson seraient tous faits dans TensorFlow Public Ce cours est destiné aux ingénieurs cherchant à utiliser TensorFlow pour leurs projets Deep Learning Après avoir terminé ce cours, les délégués: avoir une bonne compréhension des réseaux neuronaux profonds (DNN), CNN et RNN comprendre la structure et les mécanismes de déploiement de TensorFlow être capable d'effectuer les tâches et la configuration de l'environnement / de l'installation / de l'environnement de production être capable d'évaluer la qualité du code, effectuer le débogage, surveiller être en mesure de mettre en œuvre une production avancée comme des modèles de formation, la construction de graphiques et l'exploitation forestière Tous les sujets ne seraient pas couverts dans une classe publique avec une durée de 35 heures en raison de l'immensité du sujet La durée du cours complet sera d'environ 70 heures et non de 35 heures .
14 hours
Overview
La bibliothèque Apache OpenNLP est une boîte à outils basée sur l'apprentissage automatique pour le traitement du texte en langage naturel Il prend en charge les tâches PNL les plus courantes, telles que la détection de langue, la segmentation de phrases, la segmentation de phrases, l'extraction d'entités nommées, le découpage, l'analyse et la résolution de coréférences Dans cette formation en ligne, les participants apprendront comment créer des modèles pour le traitement de données textuelles à l'aide d'OpenNLP Des exemples de données de formation ainsi que des ensembles de données personnalisés seront utilisés comme base pour les exercices en laboratoire À la fin de cette formation, les participants seront en mesure de: Installez et configurez OpenNLP Télécharger des modèles existants et créer leur propre Former les modèles sur différents ensembles de données d'échantillons Intégrez OpenNLP aux applications Java existantes Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Overview
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmés Python est un langage de programmation connu pour sa syntaxe et sa lisibilité Il offre une excellente collection de bibliothèques et de techniques éprouvées pour développer des applications d'apprentissage automatique Dans cette formation en direct, les participants apprendront à appliquer des techniques d'apprentissage automatique et des outils pour résoudre les problèmes du monde réel dans le secteur bancaire Les participants apprennent d'abord les principes clés, puis mettent leurs connaissances en pratique en construisant leurs propres modèles d'apprentissage automatique et en les utilisant pour réaliser un certain nombre de projets d'équipe Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
14 hours
Overview
Dans cette formation en ligne, les participants apprendront comment utiliser Matlab pour concevoir, construire et visualiser un réseau de neurones convolutionnels pour la reconnaissance d'images À la fin de cette formation, les participants seront en mesure de: Construire un modèle d'apprentissage en profondeur Automatiser l'étiquetage des données Travailler avec des modèles de Caffe et TensorFlowKeras Formation des données à l'aide de plusieurs GPU, du cloud ou des clusters Public Développeurs Ingénieurs Les experts du domaine Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
28 hours
Overview
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmés L'apprentissage en profondeur est un sous-domaine de l'apprentissage automatique qui utilise des méthodes basées sur l'apprentissage de représentations de données et de structures telles que les réseaux de neurones R est un langage de programmation populaire dans l'industrie financière Il est utilisé dans des applications financières allant des principaux programmes d'échange aux systèmes de gestion des risques Dans le cadre de cette formation en direct, les participants apprendront comment mettre en œuvre des modèles d'apprentissage en profondeur pour les banques en utilisant le R au fur et à mesure de la création d'un modèle de risque de crédit d'apprentissage en profondeur À la fin de cette formation, les participants seront en mesure de: Comprendre les concepts fondamentaux de l'apprentissage en profondeur Apprenez les applications et les utilisations de l'apprentissage en profondeur dans le secteur bancaire Utilisez R pour créer des modèles d'apprentissage en profondeur pour les opérations bancaires Construire son propre modèle de risque de crédit d'apprentissage en profondeur en utilisant R Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
7 hours
Overview
TensorFlow Serving est un système destiné à servir les modèles d'apprentissage automatique (ML) à la production Dans cette formation en ligne, les participants apprendront comment configurer et utiliser TensorFlow Serving pour déployer et gérer des modèles ML dans un environnement de production À la fin de cette formation, les participants seront en mesure de: Former, exporter et servir divers modèles TensorFlow Tester et déployer des algorithmes à l'aide d'une architecture unique et d'un ensemble d'API Étendre TensorFlow Serving pour servir d'autres types de modèles au-delà des modèles TensorFlow Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
14 hours
Overview
Dans cette formation en ligne, les participants apprendront à utiliser la pile de technologies iOS Machine Learning (ML) au fur et à mesure qu'ils franchissent la phase de création et de déploiement d'une application mobile iOS À la fin de cette formation, les participants seront en mesure de: Créer une application mobile capable de traitement d'image, d'analyse de texte et de reconnaissance vocale Accès aux modèles ML pré-intégrés pour l'intégration dans les applications iOS Créer un modèle ML personnalisé Ajouter la prise en charge de Siri Voice aux applications iOS Comprendre et utiliser des frameworks tels que coreML, Vision, CoreGraphics et GamePlayKit Utilisez des langages et des outils tels que Python, Keras, Caffee, Tensorflow, scikit learn, libsvm, Anaconda et Spyder Public Développeurs Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Overview
Dans cette formation en ligne, les participants apprendront à utiliser les techniques d'apprentissage automatique et de traitement automatique du langage naturel (NLP) pour extraire de la valeur à partir de données textuelles À la fin de cette formation, les participants seront en mesure de: Résoudre des problèmes de science des données basés sur du texte avec un code réutilisable de haute qualité Appliquer différents aspects de scikitlearn (classification, clustering, régression, réduction de dimension) pour résoudre des problèmes Construire des modèles d'apprentissage automatique efficaces en utilisant des données textuelles Créer un ensemble de données et extraire des entités à partir d'un texte non structuré Visualiser les données avec Matplotlib Construire et évaluer des modèles pour mieux comprendre Résoudre les erreurs d'encodage de texte Public Développeurs Data Scientists Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
14 hours
Overview
Encog est un framework d'apprentissage machine opensource pour Java etNet Dans cette formation en ligne, les participants apprendront comment créer différents composants de réseau neuronal en utilisant ENCOG Les études de cas de Realworld seront discutées et des solutions basées sur le langage machine à ces problèmes seront explorées À la fin de cette formation, les participants seront en mesure de: Préparer les données pour les réseaux de neurones en utilisant le processus de normalisation Mettre en œuvre des réseaux d'anticipation et des méthodologies de formation à la propagation Implémenter des tâches de classification et de régression Modéliser et former des réseaux de neurones à l'aide de l'atelier basé sur l'interface graphique d'Encog Intégrez le support de réseau neuronal dans les applications realworld Public Développeurs Analystes Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
14 hours
Overview
Encog est un framework d'apprentissage machine opensource pour Java etNet Dans cette formation en direct, les participants apprendront des techniques avancées d'apprentissage automatique pour construire des modèles prédictifs précis de réseaux neuronaux À la fin de cette formation, les participants seront en mesure de: Mettre en œuvre différentes techniques d'optimisation des réseaux neuronaux pour résoudre les problèmes de sous-équipement et de surapprentissage Comprendre et choisir parmi un certain nombre d'architectures de réseaux neuronaux Mettre en place des réseaux de feed-back et de feedback supervisés Public Développeurs Analystes Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Overview
Dans cette formation en direct, les participants apprendront des techniques avancées d'apprentissage automatique avec R tout en progressant dans la création d'une application Realworld À la fin de cette formation, les participants seront en mesure de: Utiliser des techniques comme l'accord hyperparamétrique et l'apprentissage profond Comprendre et mettre en œuvre des techniques d'apprentissage non supervisées Mettez un modèle en production pour l'utiliser dans une application plus grande Public Développeurs Analystes Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Overview
Dans cette formation en ligne, les participants apprendront les techniques d'apprentissage automatique les plus pertinentes et les plus avancées de Python, tout en construisant une série d'applications de démonstration impliquant des images, de la musique, du texte et des données financières À la fin de cette formation, les participants seront en mesure de: Implémenter des algorithmes d'apprentissage automatique et des techniques pour résoudre des problèmes complexes Appliquer l'apprentissage en profondeur et l'apprentissage semi-supervisé aux applications impliquant des données d'image, de musique, de texte et financières Pousser les algorithmes Python à leur potentiel maximal Utiliser des bibliothèques et des paquets tels que NumPy et Theano Public Développeurs Analystes Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Overview
le but de ce cours est de fournir une compétence générale dans l’application des méthodes de machine learning dans la pratique. Grâce à l’utilisation du langage de programmation Python et de ses différentes bibliothèques, et basé sur une multitude d’exemples pratiques, ce cours enseigne comment utiliser les principaux éléments constitutifs de machine learning, comment faire des décisions de modélisation de données, interpréter les les sorties des algorithmes et valider les résultats.

notre objectif est de vous donner les compétences pour comprendre et utiliser les outils les plus fondamentaux de la boîte à outils machine learning en toute confiance et d’éviter les pièges communs des applications Data sciences.
28 hours
Overview
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmés L'apprentissage en profondeur est un sous-domaine de l'apprentissage automatique qui utilise des méthodes basées sur l'apprentissage de représentations de données et de structures telles que les réseaux de neurones Python est un langage de programmation de haut niveau connu pour sa syntaxe claire et sa lisibilité Dans cette formation en ligne, les participants apprendront comment implémenter des modèles d'apprentissage en profondeur pour les banques en utilisant Python alors qu'ils franchissent la phase de création d'un modèle de risque de crédit d'apprentissage en profondeur À la fin de cette formation, les participants seront en mesure de: Comprendre les concepts fondamentaux de l'apprentissage en profondeur Apprenez les applications et les utilisations de l'apprentissage en profondeur dans le secteur bancaire Utilisez Python, Keras et TensorFlow pour créer des modèles d'apprentissage en profondeur pour les services bancaires Construire son propre modèle de risque de crédit d'apprentissage en profondeur en utilisant Python Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
28 hours
Overview
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmés L'apprentissage en profondeur est un sous-domaine de l'apprentissage automatique qui utilise des méthodes basées sur l'apprentissage de représentations de données et de structures telles que les réseaux de neurones Python est un langage de programmation de haut niveau connu pour sa syntaxe claire et sa lisibilité Dans cette formation en direct, les participants apprendront comment implémenter des modèles d'apprentissage en profondeur pour la finance en utilisant Python à mesure qu'ils franchissent la phase de création d'un modèle de prédiction du prix des actions d'apprentissage en profondeur À la fin de cette formation, les participants seront en mesure de: Comprendre les concepts fondamentaux de l'apprentissage en profondeur Apprenez les applications et les utilisations de l'apprentissage en profondeur en finance Utilisez Python, Keras et TensorFlow pour créer des modèles d'apprentissage en profondeur pour la finance Construire son propre modèle de prédiction du prix des actions en profondeur en utilisant Python Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
14 hours
Overview
Embedding Projector est une application Web opensource permettant de visualiser les données utilisées pour former les systèmes d'apprentissage automatique Créé par Google, il fait partie de TensorFlow Cette formation en direct instruit présente les concepts derrière Embedding Projector et guide les participants à travers la configuration d'un projet de démonstration À la fin de cette formation, les participants seront en mesure de: Explorer comment les données sont interprétées par des modèles d'apprentissage automatique Naviguer à travers les vues 3D et 2D des données pour comprendre comment un algorithme d'apprentissage automatique l'interprète Comprendre les concepts derrière Embeddings et leur rôle dans la représentation des vecteurs mathématiques pour les images, les mots et les chiffres Explorer les propriétés d'un embedding spécifique pour comprendre le comportement d'un modèle Appliquer le projet d'intégration à des cas d'utilisation du monde réel tels que la construction d'un système de recommandation de chanson pour les mélomanes Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
14 hours
Overview
RapidMiner is an open source data science software platform for rapid application prototyping and development. It includes an integrated environment for data preparation, machine learning, deep learning, text mining, and predictive analytics.

In this instructor-led, live training, participants will learn how to use RapidMiner Studio for data preparation, machine learning, and predictive model deployment.

By the end of this training, participants will be able to:

- Install and configure RapidMiner
- Prepare and visualize data with RapidMiner
- Validate machine learning models
- Mashup data and create predictive models
- Operationalize predictive analytics within a business process
- Troubleshoot and optimize RapidMiner

Audience

- Data scientists
- Engineers
- Developers

Format of the Course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- To request a customized training for this course, please contact us to arrange.
14 hours
Overview
H2O est une plateforme d'analyse prédictive Open source. Il prend en charge R, Python, Scala, Java et REST.

cette formation dirigée par un instructeur, en direct (sur site ou à distance) s'adresse aux personnes techniques qui souhaitent construire des modèles de machine learning à l'aide d'algorithmes tels que GLM, Deep Learning et Random forêts.

à la fin de cette formation, les participants pourront:

- installer et configurer H2O.
- créer des modèles machine learning en utilisant différents algorithmes populaires.
- évaluez les modèles en fonction du type de données et des besoins de l'entreprise.

format du cours

- conférence interactive et discussion.
- beaucoup d'exercices et de la pratique.
implémentation de - Hands-on dans un environnement Live-Lab.

cours options de personnalisation

- pour demander une formation personnalisée pour ce cours, s'il vous plaît nous contacter pour organiser.
- pour en savoir plus sur H2O, s'il vous plaît visitez: https://www.h2o.ai/
14 hours
Overview
H2O AutoML est une plate-forme d'intelligence artificielle qui automatise le processus de construction, de sélection et d'optimisation d'un grand nombre de modèles de machine learning.

ce formateur-dirigé, formation en direct (sur place ou à distance) est destiné aux scientifiques de données qui souhaitent utiliser H2O AutoML pour automoate le processus de construction et de sélection de la meilleure machine learning algorithme et paramètres.

à la fin de cette formation, les participants pourront:

- automatisez le workflow de machine learning.
- automatiquement former et régler de nombreux modèles de machine learning dans un intervalle de temps spécifié.
les ensembles empilés - train pour arriver à des modèles d'ensemble hautement prédictifs.

format du cours

- conférence interactive et discussion.
- beaucoup d'exercices et de la pratique.
implémentation de - Hands-on dans un environnement Live-Lab.

cours options de personnalisation

- pour demander une formation personnalisée pour ce cours, s'il vous plaît nous contacter pour organiser.
14 hours
Overview
auto-sklearn est un package Python construit autour de la bibliothèque d'apprentissage de la machine scikit-Learn. Il recherche automatiquement l'algorithme d'apprentissage approprié pour un nouveau jeu de données machine learning et optimise ses paramètres.

cette formation en direct (sur site ou à distance) dirigée par un instructeur est destinée aux praticiens de l'apprentissage automatique qui souhaitent utiliser auto-sklearn pour automatiser le processus de sélection et d'optimisation d'un modèle de machine learning.

à la fin de cette formation, les participants pourront:

- automatisez le processus de formation de modèles de machine learning très efficaces.
- construire des modèles de machine learning très précis tout en contournant les tâches plus fastidieuses de sélection, de formation et de test de différents modèles.
- utiliser la puissance de l'apprentissage automatique pour résoudre des problèmes d'affaires réels.

format du cours

- conférence interactive et discussion.
- beaucoup d'exercices et de la pratique.
implémentation de - Hands-on dans un environnement Live-Lab.

cours options de personnalisation

- pour demander une formation personnalisée pour ce cours, s'il vous plaît nous contacter pour organiser.
14 hours
Overview
auto-keras (également appelé Autokeras ou auto keras) est une bibliothèque python Open source pour l'apprentissage automatique automatisé (AutoML).

cette formation dirigée par un instructeur, en direct (sur site ou à distance) s'adresse aux scientifiques de données ainsi qu'aux personnes moins techniques qui souhaitent utiliser auto-keras pour automatiser le processus de sélection et d'optimisation d'un modèle de machine learning.

à la fin de cette formation, les participants pourront:

- automatisez le processus de formation de modèles de machine learning très efficaces.
- recherche automatiquement les meilleurs paramètres pour les modèles d'apprentissage profond.
- construire des modèles de machine learning très précis.
- utiliser la puissance de l'apprentissage automatique pour résoudre des problèmes d'affaires réels.

format du cours

- conférence interactive et discussion.
- beaucoup d'exercices et de la pratique.
implémentation de - Hands-on dans un environnement Live-Lab.

cours options de personnalisation

- pour demander une formation personnalisée pour ce cours, s'il vous plaît nous contacter pour organiser.
- pour en savoir plus sur auto-keras, s'il vous plaît visitez: https://autokeras.com/
14 hours
Overview
AutoML est un logiciel d'apprentissage automatique convivial qui automatise une grande partie du travail nécessaire pour sélectionner un algorithme d'apprentissage machine idéal, ses paramètres de paramètre et les méthodes de pré-traitement.

cette formation dirigée par un instructeur, en direct (sur site ou à distance) s'adresse aux personnes techniques ayant un arrière-plan dans l'apprentissage automatique qui souhaitent optimiser les modèles de machine learning utilisés pour la détection de modèles complexes en Big Data.

à la fin de cette formation, les participants pourront:

- installer et évaluer divers outils AutoML Open source.
- train de haute qualité machine learning modèles.
- résoudre efficacement différents types de problèmes d'apprentissage machine supervisés.
- écrivez simplement le code nécessaire pour initier le processus automatisé de machine learning.

format du cours

- conférence interactive et discussion.
- beaucoup d'exercices et de la pratique.
implémentation de - Hands-on dans un environnement Live-Lab.

cours options de personnalisation

- pour demander une formation personnalisée pour ce cours, s'il vous plaît nous contacter pour organiser.
- pour en savoir plus sur AutoML, s'il vous plaît visitez: https://www.automl.org/
28 hours
Overview
This is a 4 day course introducing AI and it's application using the Python programming language. There is an option to have an additional day to undertake an AI project on completion of this course.

Prochains cours Machine Learning

Weekend Machine Learning cours, Soir Machine Learning formation, Machine Learning stage d’entraînement, Machine Learning formateur à distance, Machine Learning formateur en ligne, Machine Learning formateur Online, Machine Learning cours en ligne, Machine Learning cours à distance, Machine Learning professeur à distance, Machine Learning visioconférence, Machine Learning stage d’entraînement intensif, Machine Learning formation accélérée, Machine Learning formation intensive, Formation inter Machine Learning, Formation intra Machine Learning, Formation intra Enteprise Machine Learning, Formation inter Entreprise Machine Learning, Weekend Machine Learning formation, Soir Machine Learning cours, Machine Learning coaching, Machine Learning entraînement, Machine Learning préparation, Machine Learning instructeur, Machine Learning professeur, Machine Learning formateur, Machine Learning stage de formation, Machine Learning cours, Machine Learning sur place, Machine Learning formations privées, Machine Learning formation privée, Machine Learning cours particulier, Machine Learning cours particuliers

Réduction spéciale

Newsletter offres spéciales

Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque
Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.

Nos clients

is growing fast!

We are looking to expand our presence in Belgium!

As a Business Development Manager you will:

  • expand business in Belgium
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!