
L'apprentissage automatique ou apprentissage statistique, champ d'étude de l'intelligence artificielle, concerne la conception, l'analyse, le développement et l'implémentation de méthodes permettant à une machine (au sens large) d'évoluer par un processus systématique, et ainsi de remplir des tâches difficiles ou problématiques à remplir par des moyens algorithmiques plus classiques.
Nos Clients témoignent
C'était très interactif et plus détendu et informel que prévu. Nous avons couvert de nombreux sujets dans le temps et le formateur a toujours été réceptif à parler plus en détail ou plus généralement des sujets et de leurs relations. Je pense que la formation m'a donné les outils pour continuer à apprendre, par opposition à une session unique où l'apprentissage s'arrête une fois que vous avez terminé, ce qui est très important compte tenu de l'ampleur et de la complexité du sujet.
Jonathan Blease
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Le formateur était très compétent et comprenait des domaines qui m'intéressaient.
Mohamed Salama
Formation: Data Mining & Machine Learning with R
Machine Translated
Le sujet est très intéressant.
Wojciech Baranowski
Formation: Introduction to Deep Learning
Machine Translated
Connaissances théoriques des formateurs et volonté de résoudre les problèmes avec les participants après la formation.
Grzegorz Mianowski
Formation: Introduction to Deep Learning
Machine Translated
Sujet. Très intéressant!.
Piotr
Formation: Introduction to Deep Learning
Machine Translated
Les exercices après chaque sujet ont été très utiles, même s’ils étaient trop compliqués à la fin. En général, le matériel présenté était très intéressant et intéressant! Les exercices avec reconnaissance d'image étaient excellents.
Dolby Poland Sp. z o.o.
Formation: Introduction to Deep Learning
Machine Translated
Je pense que si la formation se faisait en polonais, cela permettrait au formateur de partager ses connaissances plus efficacement.
Radek
Formation: Introduction to Deep Learning
Machine Translated
La vue d'ensemble globale de l'apprentissage en profondeur.
Bruno Charbonnier
Formation: Advanced Deep Learning
Machine Translated
Les exercices sont suffisamment pratiques et ne nécessitent pas de connaissances approfondies en Python .
Alexandre GIRARD
Formation: Advanced Deep Learning
Machine Translated
Faire des exercices sur des exemples réels en utilisant Eras. L'Italie a parfaitement compris nos attentes concernant cette formation.
Paul Kassis
Formation: Advanced Deep Learning
Machine Translated
J'ai vraiment apprécié les réponses claires de Chris à nos questions.
Léo Dubus
Formation: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
Machine Translated
J'ai généralement apprécié le formateur compétent.
Sridhar Voorakkara
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai été stupéfait par la qualité de ce cours - je dirais que c'était la norme universitaire.
David Relihan
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Très bon aperçu général. Go historique des raisons pour lesquelles Tensorflow fonctionne comme il le fait.
Kieran Conboy
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai aimé les possibilités de poser des questions et d'obtenir des explications plus approfondies de la théorie.
Sharon Ruane
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Nous avons eu beaucoup plus d'informations sur le sujet. Une belle discussion a été faite avec certains sujets réels au sein de notre société.
Sebastiaan Holman
Formation: Machine Learning and Deep Learning
Machine Translated
La formation a fourni la bonne base qui nous permet de continuer à nous développer, en montrant comment la théorie et la pratique vont de pair. En fait, cela m'intéressait plus que par le passé.
Jean-Paul van Tillo
Formation: Machine Learning and Deep Learning
Machine Translated
J'ai vraiment apprécié la couverture et la profondeur des sujets.
Anirban Basu
Formation: Machine Learning and Deep Learning
Machine Translated
Le formateur a très facilement expliqué des sujets difficiles et avancés.
Leszek K
Formation: Artificial Intelligence Overview
Machine Translated
La connaissance approfondie du formateur sur le sujet.
Sebastian Görg
Formation: Introduction to Deep Learning
Machine Translated
Approche très actualisée ou IPC (flux tensoriel, ère, apprendre) pour faire de l'apprentissage automatique.
Paul Lee
Formation: TensorFlow for Image Recognition
Machine Translated
Très souple.
Frank Ueltzhöffer
Formation: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
J'ai généralement apprécié la flexibilité.
Werner Philipp
Formation: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
Compte tenu des perspectives de la technologie: quelle technologie / processus pourrait devenir plus important dans le futur; voir à quoi la technologie peut être utilisée
Commerzbank AG
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
J'ai bénéficié de la sélection de sujets. Style de formation. Orientation pratique
Commerzbank AG
Formation: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Tout comme ça
蒙 李
Formation: Machine Learning Fundamentals with Python
Machine Translated
manière de conduire et exemple donné par le formateur
ORANGE POLSKA S.A.
Formation: Machine Learning and Deep Learning
Machine Translated
Possibilité de discuter vous-même des problèmes proposés
ORANGE POLSKA S.A.
Formation: Machine Learning and Deep Learning
Machine Translated
Communication avec des conférenciers
文欣 张
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Comme ça
lisa xie
Formation: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Couverture approfondie des sujets d'apprentissage automatique, en particulier des réseaux de neurones. Démystifié beaucoup de sujet.
Sacha Nandlall
Formation: Python for Advanced Machine Learning
Machine Translated
J'ai vraiment aimé les exercices
L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
les exercices de laboratoire
Marcell Lorant - L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
Le cahier Jupyter, dans lequel le matériel de formation est disponible
L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
Il y avait beaucoup d'exercices et de sujets intéressants.
L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
des exercices de laboratoire géniaux analysés et expliqués en profondeur par le formateur (par exemple, covariants en régression linéaire, correspondant à la fonction réelle)
L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
C'est tout simplement génial que tout le matériel, y compris les exercices, soit sur la même page et qu'il soit mis à jour à la volée. La solution est révélée à la fin. Cool! De plus, j'apprécie que Krzysztof ait fait un effort supplémentaire pour comprendre nos problèmes et nous a suggéré des techniques possibles.
Attila Nagy - L M ERICSSON LIMITED
Formation: Machine Learning
Machine Translated
Connaissances approfondies et actualisées d’exemples d’applications de premier plan et pratiques.
ING Bank Śląski S.A.
Formation: Introduction to Deep Learning
Machine Translated
Beaucoup d'exercices, très bonne coopération avec le groupe.
Janusz Chrobot - ING Bank Śląski S.A.
Formation: Introduction to Deep Learning
Machine Translated
travailler sur des collaborateurs,
ING Bank Śląski S.A.
Formation: Introduction to Deep Learning
Machine Translated
Il était évident que les passionnés des sujets présentés étaient en tête. Utilisé des exemples intéressants pendant l'exercice.
ING Bank Śląski S.A.
Formation: Introduction to Deep Learning
Machine Translated
Un large éventail de sujets couverts et une connaissance approfondie des dirigeants.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
manque
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Grandes connaissances théoriques et pratiques des conférenciers. Communicativeness des formateurs. Pendant le cours, vous pouvez poser des questions et obtenir des réponses satisfaisantes.
Kamil Kurek - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Partie pratique, où nous avons implémenté des algorithmes. Cela a permis une meilleure compréhension du sujet.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
exercices et exemples mis en oeuvre
Paweł Orzechowski - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Exemples et problèmes discutés.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Connaissances substantielles, engagement, une manière passionnée de transférer des connaissances. Exemples pratiques après un cours théorique.
Janusz Chrobot - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
Exercices pratiques préparés par M. Maciej
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Formation: Understanding Deep Neural Networks
Machine Translated
J'avais profité de la passion d'enseigner et de me concentrer pour rendre les choses sensées.
Zaher Sharifi - GOSI
Formation: Advanced Deep Learning
Machine Translated
Sous-catégories Machine Learning (ML)
Plans de cours Machine Learning (ML)
- Comprendre les concepts et principes clés derrière les transformateurs pré-formés génératifs. Comprendre l'architecture et le processus de formation des modèles GPT. Utilisez GPT-3 pour des tâches telles que la génération, la complétion et la traduction de texte. Découvrez les dernières avancées de GPT-4 et ses applications potentielles. Appliquer les modèles GPT à leurs propres projets et tâches NLP.
- Conférence interactive et discussion. Beaucoup d'exercices et de pratique. Mise en œuvre pratique dans un environnement de laboratoire réel.
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
- Installez et configurez LightGBM. Comprendre la théorie derrière les algorithmes d'amplification de gradient et d'arbre de décision Utilisez LightGBM pour les tâches d'apprentissage automatique de base et avancées. Mettez en œuvre des techniques avancées telles que l'ingénierie des fonctionnalités, le réglage des hyperparamètres et l'interprétation des modèles. Intégrez LightGBM à d'autres frameworks d'apprentissage automatique. Résoudre les problèmes courants dans LightGBM.
- Conférence interactive et discussion. Beaucoup d'exercices et de pratique. Mise en œuvre pratique dans un environnement de laboratoire réel.
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
- Comprendre les architectures et les techniques avancées d'apprentissage en profondeur pour la génération de texte en image. Implémentez des modèles complexes et des optimisations pour une synthèse d'images de haute qualité. Optimisez les performances et l'évolutivité pour les grands ensembles de données et les modèles complexes. Ajustez les hyperparamètres pour améliorer les performances et la généralisation du modèle. Intégrez Stable Diffusion à d'autres cadres et outils d'apprentissage en profondeur.
- Conférence interactive et discussion. Beaucoup d'exercices et de pratique. Mise en œuvre pratique dans un environnement de laboratoire réel.
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
- Comprenez comment Vertex AI fonctionne et utilisez-le comme plateforme d'apprentissage automatique. En savoir plus sur l'apprentissage automatique et les concepts de la PNL. Savoir former et déployer des modèles d'apprentissage automatique à l'aide de Vertex AI.
- Conférence interactive et discussion. Beaucoup d'exercices et de pratique. Mise en œuvre pratique dans un environnement de laboratoire réel.
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
- Comprendre les principes de l'apprentissage profond distribué. Installez et configurez DeepSpeed. Mettez à l'échelle des modèles d'apprentissage en profondeur sur du matériel distribué à l'aide de DeepSpeed. Implémentez et expérimentez les fonctionnalités DeepSpeed pour l'optimisation et l'efficacité de la mémoire.
- Conférence interactive et discussion. Beaucoup d'exercices et de pratique. Mise en œuvre pratique dans un environnement de laboratoire réel.
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
-
Comprendre les principes fondamentaux de AlphaFold.
Apprenez comment cela fonctionne AlphaFold.
Apprenez à interpréter AlphaFold les prévisions et les résultats.
-
Lecture et discussion interactives.
Beaucoup d’exercices et de pratiques.
La mise en œuvre dans un environnement de laboratoire en direct.
-
Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
- Comprendre les principes de Stable Diffusion et son fonctionnement pour la génération d'images. Créez et entraînez des modèles Stable Diffusion pour les tâches de génération d'images. Appliquez Stable Diffusion à divers scénarios de génération d'images, tels que l'inpainting, le outpainting et la traduction d'image à image. Optimisez les performances et la stabilité des modèles Stable Diffusion.
- Conférence interactive et discussion. Beaucoup d'exercices et de pratique. Mise en œuvre pratique dans un environnement de laboratoire réel.
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
-
Installer et configurer Weka
Comprendre Weka l’environnement et le système de travail.
Exécuter des tâches de minage de données en utilisant Weka.
-
Lecture et discussion interactives.
Beaucoup d’exercices et de pratiques.
La mise en œuvre dans un environnement de laboratoire en direct.
-
Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
- Comprenez les concepts clés derrière la Profonde Reinforcement Learning et soient capables de le distinguer de Machine Learning Appliquer des algoritmes avancés Reinforcement Learning pour résoudre les problèmes du monde réel Construire un Deep Learning Agent
- Développeurs des scientifiques de données
- Participation, débat de partie, exercices et pratiques lourdes
-
Comprendre les concepts fondamentaux de l’apprentissage profond.
Apprendre les applications et les utilisations de l'apprentissage profond dans la télécommunication.
Utilisez Python, Keras, et TensorFlow pour créer des modèles d'apprentissage profond pour les télécoms.
Construisez votre propre modèle d'apprentissage profond du client en utilisant Python.
-
Lecture et discussion interactives.
Beaucoup d’exercices et de pratiques.
La mise en œuvre dans un environnement de laboratoire en direct.
-
Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
- Investisseurs et entrepreneurs en IA
- Gestionnaires et ingénieurs dont l'entreprise se lance dans l'IA
- Analystes d' Business et investisseurs
Dernière mise à jour :