Plan du cours
Introduction à l'apprentissage appliqué Machine Learning
- Apprentissage statistique vs. apprentissage automatique
- Itération et évaluation
- Compromis biais-variance
Machine Learning avec Python
- Choix des bibliothèques
- Outils complémentaires
Régression
- Régression linéaire
- Généralisations et non-linéarité
- Exercices
Classification
- Rappel sur la classification bayésienne
- Bayes naïf
- Régression logistique
- K-Proches voisins
- Exercices
Validation croisée et rééchantillonnage
- Approches de validation croisée
- Bootstrap
- Exercices
Apprentissage non supervisé
- K-means clustering
- Exemples d'apprentissage non supervisé
- Défis de l'apprentissage non supervisé et au-delà des K-moyennes
Pré requis
Connaissance du langage de programmation Python. Une connaissance de base des statistiques et de l'algèbre linéaire est recommandée.
Nos clients témoignent (5)
The trainer showed that he has a good understanding of the subject.
Marino - EQUS - The University of Queensland
Formation - Machine Learning with Python – 2 Days
It was a great intro to ML!! I liked the whole thing, really. The organization was perfect. The right amount of time for lectures/ demos and just us playing around. Lots of topics were touched, just at the right level. He was also very good at keeping us super engaged, even without any camera being on.
Zsolt - EQUS - The University of Queensland
Formation - Machine Learning with Python – 2 Days
Clarity of explanation and knowledgeable response to questions.
Harish - EQUS - The University of Queensland
Formation - Machine Learning with Python – 2 Days
The knowledge of the trainer was very high and the material was well prepared and organised.
Otilia - TCMT
Formation - Machine Learning with Python – 2 Days
I thought the trainer was very knowledgeable and answered questions with confidence to clarify understanding.