Merci d'avoir envoyé votre demande ! Un membre de notre équipe vous contactera sous peu.
Merci d'avoir envoyé votre réservation ! Un membre de notre équipe vous contactera sous peu.
Plan du cours
Introduction to ROS 2 and Autonomous Navigation
- Overview of ROS 2 architecture and capabilities
- Understanding navigation systems in robotics
- Setting up the ROS 2 environment
Working with Sensors and Data Acquisition
- Integrating LiDAR and camera sensors
- Collecting and processing sensor data
- Visualizing sensor outputs using Rviz
Mapping and Localization Fundamentals
- Principles of SLAM
- Implementing 2D and 3D mapping
- Localization using AMCL and other techniques
Path Planning and Obstacle Avoidance
- Exploring path planning algorithms
- Dynamic obstacle detection and avoidance
- Testing navigation in simulated environments
Using Gazebo for Simulation
- Setting up Gazebo simulations with ROS 2
- Testing robot models and navigation stacks
- Analyzing performance in virtual environments
Deploying SLAM and Navigation on Real Robots
- Connecting ROS 2 to physical hardware
- Calibrating sensors and actuators
- Running real-time navigation experiments
Troubleshooting and Performance Optimization
- Debugging navigation issues in ROS 2
- Optimizing SLAM algorithms for efficiency
- Fine-tuning navigation parameters
Summary and Next Steps
Pré requis
- An understanding of robotics principles
- Experience with Linux-based systems
- Basic knowledge of programming in Python or C++
Audience
- Robotics engineers
- Automation developers
- Research and development professionals in autonomous systems
21 Heures
Nos clients témoignent (1)
sa connaissance et son utilisation de l'IA pour Robotics l'avenir.
Ryle - PHILIPPINE MILITARY ACADEMY
Formation - Artificial Intelligence (AI) for Robotics
Traduction automatique