Formation Smart Robotics in Manufacturing: AI for Perception, Planning, and Control
Smart Robotics is the integration of artificial intelligence into robotic systems for improved perception, decision-making, and autonomous control.
This instructor-led, live training (online or onsite) is aimed at advanced-level robotics engineers, systems integrators, and automation leads who wish to implement AI-driven perception, planning, and control in smart manufacturing environments.
By the end of this training, participants will be able to:
- Understand and apply AI techniques for robotic perception and sensor fusion.
- Develop motion planning algorithms for collaborative and industrial robots.
- Deploy learning-based control strategies for real-time decision making.
- Integrate intelligent robotic systems into smart factory workflows.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Plan du cours
Introduction to Smart Robotics and AI Integration
- Overview of robotics in Industry 4.0
- AI’s role in perception, planning, and control
- Software and simulation environments
Perception Systems and Sensor Fusion
- Computer vision for robotics (2D/3D cameras, LiDAR)
- Sensor calibration and fusion techniques
- Object detection and environment mapping
Deep Learning for Perception
- Neural networks for visual recognition
- Using TensorFlow or PyTorch with robotic data
- Training perception models for object tracking
Motion Planning and Path Optimization
- Sampling-based and optimization-based planning
- Working with MoveIt for motion planning
- Collision avoidance and dynamic re-planning
Learning-Based Control Strategies
- Reinforcement learning for robotic control
- Integrating AI into low-level control loops
- Simulation with OpenAI Gym and Gazebo
Collaborative Robots (Cobots) in Smart Manufacturing
- Safety standards and human-robot collaboration
- Programming and integrating cobots with AI
- Adaptive behaviors and real-time responsiveness
System Integration and Deployment
- Interfacing with industrial controllers (PLC, SCADA)
- Edge AI deployment for real-time robotics
- Data logging, monitoring, and troubleshooting
Summary and Next Steps
Pré requis
- An understanding of robotic systems and kinematics
- Experience with Python programming
- Familiarity with AI or machine learning concepts
Audience
- Robotics engineers
- Systems integrators
- Automation leads
Les formations ouvertes requièrent plus de 3 participants.
Formation Smart Robotics in Manufacturing: AI for Perception, Planning, and Control - Booking
Formation Smart Robotics in Manufacturing: AI for Perception, Planning, and Control - Enquiry
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control - Demande d'informations consulting
Demande d'informations consulting
Cours à venir
Cours Similaires
AI-Powered Predictive Maintenance for Industrial Systems
14 HeuresAI-powered predictive maintenance applies machine learning and data analytics to forecast equipment failures and optimize maintenance schedules. It transforms reactive maintenance models into proactive strategies, enabling better uptime, cost reduction, and asset longevity.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to implement AI-driven predictive maintenance solutions in industrial environments.
By the end of this training, participants will be able to:
- Understand how predictive maintenance differs from reactive and preventive maintenance strategies.
- Collect and structure machine data for AI-powered analysis.
- Apply machine learning models to detect anomalies and predict failures.
- Implement end-to-end workflows from sensor data to actionable insights.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises and case studies.
- Live demonstration and practical data workflows.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Process Optimization in Manufacturing Operations
21 HeuresAI for Process Optimization is the application of machine learning and data analytics to enhance efficiency, quality, and throughput in manufacturing operations.
This instructor-led, live training (online or onsite) is aimed at intermediate-level manufacturing professionals who wish to apply AI techniques to streamline operations, reduce downtime, and support continuous improvement initiatives.
By the end of this training, participants will be able to:
- Understand AI concepts relevant to manufacturing optimization.
- Collect and prepare production data for analysis.
- Apply machine learning models to identify bottlenecks and predict failures.
- Visualize and interpret results to support data-driven decisions.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Quality Control and Assurance in Production Lines
21 HeuresAI for Quality Control is the use of computer vision and machine learning techniques to identify defects, anomalies, and deviations in production processes.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level quality professionals who wish to apply AI tools to automate inspections and improve product quality in manufacturing environments.
By the end of this training, participants will be able to:
- Understand how AI is applied in industrial quality control.
- Collect and label image or sensor data from production lines.
- Use machine learning and computer vision to detect defects.
- Develop simple AI models for anomaly detection and yield forecasting.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Supply Chain and Manufacturing Logistics
21 HeuresAI in Supply Chain and Manufacturing Logistics is the application of predictive analytics, machine learning, and automation to optimize inventory, routing, and demand forecasting.
This instructor-led, live training (online or onsite) is aimed at intermediate-level supply chain professionals who wish to apply AI-driven tools to enhance logistics performance, forecast demand accurately, and automate warehouse and transport operations.
By the end of this training, participants will be able to:
- Understand how AI is applied across logistics and supply chain activities.
- Use machine learning models for demand forecasting and inventory control.
- Analyze routes and optimize transport using AI-based techniques.
- Automate decision-making in warehouses and fulfillment processes.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI in Smart Factories and Industrial Automation
14 HeuresAI in Smart Factories is the application of artificial intelligence to automate, monitor, and optimize industrial operations in real time.
This instructor-led, live training (online or onsite) is aimed at beginner-level decision-makers and technical leads who wish to gain a strategic and practical introduction to how AI can be leveraged in smart factory environments.
By the end of this training, participants will be able to:
- Understand the core principles of AI and machine learning.
- Identify key AI use cases in manufacturing and automation.
- Explore how AI supports predictive maintenance, quality control, and process optimization.
- Evaluate the steps involved in launching AI-driven initiatives.
Format of the Course
- Interactive lecture and discussion.
- Real-world case studies and group exercises.
- Strategic frameworks and implementation guidance.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Hands-on Workshop: Implementing AI Use Cases with Industrial Data
21 HeuresAI Use Case Implementation is a hands-on, project-driven approach to applying machine learning, computer vision, and data analytics to solve real-world industrial challenges using actual or simulated datasets.
This instructor-led, live training (online or onsite) is aimed at intermediate-level cross-functional teams who wish to collaboratively implement AI use cases aligned with their operational goals and gain experience working with industrial data pipelines.
By the end of this training, participants will be able to:
- Select and scope practical AI use cases from operations, quality, or maintenance.
- Work collaboratively across roles to develop machine learning solutions.
- Handle, clean, and analyze diverse industrial datasets.
- Present a working prototype of an AI-enabled solution based on a selected use case.
Format of the Course
- Interactive lecture and discussion.
- Group-based exercises and project work.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Developing Intelligent Bots with Azure
14 HeuresAzure Bot Service combine la puissance du Microsoft Bot Framework et des fonctions Azure pour permettre le développement rapide de robots intelligents.
Dans cette formation en direct animée par un instructeur, les participants apprendront à créer facilement un bot intelligent à l'aide de Microsoft Azure
À la fin de cette formation, les participants seront en mesure de:
- Maîtriser les fondamentaux des robots intelligents
- Découvrir comment créer des robots intelligents à l'aide d'applications cloud
- Comprendre comment utiliser le Microsoft Bot Framework, le Bot Builder SDK et le service de bot Azure
- Savoir concevoir des bots en utilisant des modèles de bot
- Développer leur premier robot intelligent avec Microsoft Azure
Public
- Développeurs
- Passionnés
- Ingénieurs
- Professionnels IT
Format du cours
- Mixte entre présentation, discussion, exercices et pratique intensive
Developing a Bot
14 HeuresUn bot ou chatbot est une sorte d'assistant informatique utilisé pour automatiser les interactions des utilisateurs sur diverses plateformes de messagerie et pour accélérer les choses sans que les utilisateurs aient besoin de parler à un autre humain.
Dans cette formation en direct, les participants apprendront comment commencer à développer un bot en passant par la création d'exemples de chatbots à l'aide d'outils et de frameworks de développement de bot.
À l'issue de cette formation, les participants seront en mesure de :
- Comprendre les différentes utilisations et applications des bots
- Comprendre le processus complet de développement des bots
- Explorer les différents outils et plateformes utilisés dans la construction de bots
- Construire un exemple de chatbot pour Facebook Messenger
- Construire un exemple de chatbot en utilisant Microsoft Bot Framework
Public
- Développeurs intéressés par la création de leur propre bot
Format du cours
- En partie conférence, en partie discussion, exercices et pratique intensive.
Building Digital Twins with AI and Real-Time Data
21 HeuresDigital Twins are virtual replicas of physical systems enhanced by real-time data and AI-driven intelligence.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to build, deploy, and optimize digital twin models using real-time data and AI-based insights.
By the end of this training, participants will be able to:
- Understand the architecture and components of digital twins.
- Use simulation tools to model complex systems and environments.
- Integrate real-time data streams into virtual models.
- Apply AI techniques for predictive behavior and anomaly detection.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level
21 HeuresEdge AI is the deployment of artificial intelligence models directly on devices and machines at the edge of the network, enabling real-time decision-making with minimal latency.
This instructor-led, live training (online or onsite) is aimed at advanced-level embedded and IoT professionals who wish to deploy AI-powered logic and control systems in manufacturing environments where speed, reliability, and offline operation are critical.
By the end of this training, participants will be able to:
- Understand the architecture and benefits of edge AI systems.
- Build and optimize AI models for deployment on embedded devices.
- Use tools like TensorFlow Lite and OpenVINO for low-latency inference.
- Integrate edge intelligence with sensors, actuators, and industrial protocols.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Industrial Computer Vision with AI: Defect Detection and Visual Inspection
14 HeuresIndustrial computer vision with AI is transforming how manufacturers and QA teams detect surface defects, verify part conformity, and automate visual inspection processes.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level QA teams, automation engineers, and developers who wish to design and implement computer vision systems for defect detection and inspection using AI techniques.
By the end of this training, participants will be able to:
- Understand the architecture and components of industrial vision systems.
- Build AI models for visual defect detection using deep learning.
- Integrate real-time inspection pipelines with industrial cameras and devices.
- Deploy and optimize AI-powered inspection systems for production environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Artificial Intelligence (AI) for Mechatronics
21 HeuresCette formation en direct avec instructeur dans Belgique (en ligne ou sur site) est destinée aux ingénieurs qui souhaitent apprendre l'applicabilité de l'intelligence artificielle aux systèmes mécatroniques.
A l'issue de cette formation, les participants seront en mesure de :
- Obtenir une vue d'ensemble de l'intelligence artificielle, de l'apprentissage automatique et de l'intelligence computationnelle.
- Comprendre les concepts des réseaux neuronaux et des différentes méthodes d'apprentissage.
- Choisir des approches d'intelligence artificielle efficaces pour des problèmes de la vie réelle.
- Mettre en œuvre des applications d'intelligence artificielle dans l'ingénierie mécatronique.
Physical AI for Robotics and Automation
21 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur site) s'adresse aux participants de niveau intermédiaire qui souhaitent améliorer leurs compétences en matière de conception, de programmation et de déploiement de systèmes robotiques intelligents pour l'automatisation et au-delà.
A la fin de cette formation, les participants seront capables de :
- Comprendre les principes de Physical AI et ses applications en robotique et en automatisation.
- Concevoir et programmer des systèmes robotiques intelligents pour des environnements dynamiques.
- Mettre en œuvre des modèles d'IA pour la prise de décision autonome dans les robots.
- Exploiter les outils de simulation pour les tests et l'optimisation des robots.
- Relever des défis tels que la fusion de capteurs, le traitement en temps réel et l'efficacité énergétique.
Smart Robots for Developers
84 HeuresUn robot intelligent est un système Artificial Intelligence (AI) capable d'apprendre de son environnement et de son expérience et de développer ses capacités sur la base de ces connaissances. Les robots intelligents Smart Robots peuvent collaborer avec les humains, travailler à leurs côtés et apprendre de leur comportement. En outre, ils sont capables d'effectuer non seulement des travaux manuels, mais aussi des tâches cognitives. Outre les robots physiques, Smart Robots peut également être purement logiciel, résidant dans un ordinateur en tant qu'application logicielle sans pièces mobiles ni interaction physique avec le monde.
Dans cette formation en direct dirigée par un instructeur, les participants apprendront les différentes technologies, cadres et techniques pour programmer différents types de robots mécaniques Smart Robots, puis appliqueront ces connaissances pour réaliser leurs propres projets de robots intelligents.
Le cours est divisé en 4 sections, chacune consistant en trois jours de conférences, de discussions et de développement pratique de robots dans un environnement de laboratoire en direct. Chaque section se terminera par un projet pratique permettant aux participants de mettre en pratique et de démontrer les connaissances acquises.
Le matériel cible de ce cours sera simulé en 3D à l'aide d'un logiciel de simulation. Les logiciels libres ROS (Robot Operating System), C++ et Python seront utilisés pour programmer les robots.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les concepts clés utilisés dans les technologies robotiques
- Comprendre et gérer l'interaction entre le logiciel et le matériel dans un système robotique
- Comprendre et mettre en œuvre les composants logiciels qui sous-tendent Smart Robots.
- Construire et faire fonctionner un robot intelligent mécanique simulé qui peut voir, sentir, traiter, saisir, naviguer et interagir avec les humains par la voix.
- Étendre la capacité d'un robot intelligent à effectuer des tâches complexes par le biais de Deep Learning.
- Tester et dépanner un robot intelligent dans des scénarios réalistes
Public
- Développeurs
- Ingénieurs
Format du cours
- En partie conférence, en partie discussion, exercices et pratique intensive.
Remarque
- Pour personnaliser une partie de ce cours (langage de programmation, modèle de robot, etc.), veuillez nous contacter.