Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Cursus
Smart Robotics is the integration of artificial intelligence into robotic systems for improved perception, decision-making, and autonomous control.
This instructor-led, live training (online or onsite) is aimed at advanced-level robotics engineers, systems integrators, and automation leads who wish to implement AI-driven perception, planning, and control in smart manufacturing environments.
By the end of this training, participants will be able to:
- Understand and apply AI techniques for robotic perception and sensor fusion.
- Develop motion planning algorithms for collaborative and industrial robots.
- Deploy learning-based control strategies for real-time decision making.
- Integrate intelligent robotic systems into smart factory workflows.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Cursusaanbod
Introduction to Smart Robotics and AI Integration
- Overview of robotics in Industry 4.0
- AI’s role in perception, planning, and control
- Software and simulation environments
Perception Systems and Sensor Fusion
- Computer vision for robotics (2D/3D cameras, LiDAR)
- Sensor calibration and fusion techniques
- Object detection and environment mapping
Deep Learning for Perception
- Neural networks for visual recognition
- Using TensorFlow or PyTorch with robotic data
- Training perception models for object tracking
Motion Planning and Path Optimization
- Sampling-based and optimization-based planning
- Working with MoveIt for motion planning
- Collision avoidance and dynamic re-planning
Learning-Based Control Strategies
- Reinforcement learning for robotic control
- Integrating AI into low-level control loops
- Simulation with OpenAI Gym and Gazebo
Collaborative Robots (Cobots) in Smart Manufacturing
- Safety standards and human-robot collaboration
- Programming and integrating cobots with AI
- Adaptive behaviors and real-time responsiveness
System Integration and Deployment
- Interfacing with industrial controllers (PLC, SCADA)
- Edge AI deployment for real-time robotics
- Data logging, monitoring, and troubleshooting
Summary and Next Steps
Vereisten
- An understanding of robotic systems and kinematics
- Experience with Python programming
- Familiarity with AI or machine learning concepts
Audience
- Robotics engineers
- Systems integrators
- Automation leads
Voor open trainingen is een minimum aantal van 5 deelnemers vereist
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Cursus - Booking
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Cursus - Enquiry
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control - Consultancyaanvraag
Consultancyaanvraag
Voorlopige Aankomende Cursussen
Gerelateerde cursussen
AI-Powered Predictive Maintenance for Industrial Systems
14 UrenAI-powered predictive maintenance applies machine learning and data analytics to forecast equipment failures and optimize maintenance schedules. It transforms reactive maintenance models into proactive strategies, enabling better uptime, cost reduction, and asset longevity.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to implement AI-driven predictive maintenance solutions in industrial environments.
By the end of this training, participants will be able to:
- Understand how predictive maintenance differs from reactive and preventive maintenance strategies.
- Collect and structure machine data for AI-powered analysis.
- Apply machine learning models to detect anomalies and predict failures.
- Implement end-to-end workflows from sensor data to actionable insights.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises and case studies.
- Live demonstration and practical data workflows.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Process Optimization in Manufacturing Operations
21 UrenAI for Process Optimization is the application of machine learning and data analytics to enhance efficiency, quality, and throughput in manufacturing operations.
This instructor-led, live training (online or onsite) is aimed at intermediate-level manufacturing professionals who wish to apply AI techniques to streamline operations, reduce downtime, and support continuous improvement initiatives.
By the end of this training, participants will be able to:
- Understand AI concepts relevant to manufacturing optimization.
- Collect and prepare production data for analysis.
- Apply machine learning models to identify bottlenecks and predict failures.
- Visualize and interpret results to support data-driven decisions.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Quality Control and Assurance in Production Lines
21 UrenAI for Quality Control is the use of computer vision and machine learning techniques to identify defects, anomalies, and deviations in production processes.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level quality professionals who wish to apply AI tools to automate inspections and improve product quality in manufacturing environments.
By the end of this training, participants will be able to:
- Understand how AI is applied in industrial quality control.
- Collect and label image or sensor data from production lines.
- Use machine learning and computer vision to detect defects.
- Develop simple AI models for anomaly detection and yield forecasting.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Supply Chain and Manufacturing Logistics
21 UrenAI in Supply Chain and Manufacturing Logistics is the application of predictive analytics, machine learning, and automation to optimize inventory, routing, and demand forecasting.
This instructor-led, live training (online or onsite) is aimed at intermediate-level supply chain professionals who wish to apply AI-driven tools to enhance logistics performance, forecast demand accurately, and automate warehouse and transport operations.
By the end of this training, participants will be able to:
- Understand how AI is applied across logistics and supply chain activities.
- Use machine learning models for demand forecasting and inventory control.
- Analyze routes and optimize transport using AI-based techniques.
- Automate decision-making in warehouses and fulfillment processes.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI in Smart Factories and Industrial Automation
14 UrenAI in Smart Factories is the application of artificial intelligence to automate, monitor, and optimize industrial operations in real time.
This instructor-led, live training (online or onsite) is aimed at beginner-level decision-makers and technical leads who wish to gain a strategic and practical introduction to how AI can be leveraged in smart factory environments.
By the end of this training, participants will be able to:
- Understand the core principles of AI and machine learning.
- Identify key AI use cases in manufacturing and automation.
- Explore how AI supports predictive maintenance, quality control, and process optimization.
- Evaluate the steps involved in launching AI-driven initiatives.
Format of the Course
- Interactive lecture and discussion.
- Real-world case studies and group exercises.
- Strategic frameworks and implementation guidance.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Hands-on Workshop: Implementing AI Use Cases with Industrial Data
21 UrenAI Use Case Implementation is a hands-on, project-driven approach to applying machine learning, computer vision, and data analytics to solve real-world industrial challenges using actual or simulated datasets.
This instructor-led, live training (online or onsite) is aimed at intermediate-level cross-functional teams who wish to collaboratively implement AI use cases aligned with their operational goals and gain experience working with industrial data pipelines.
By the end of this training, participants will be able to:
- Select and scope practical AI use cases from operations, quality, or maintenance.
- Work collaboratively across roles to develop machine learning solutions.
- Handle, clean, and analyze diverse industrial datasets.
- Present a working prototype of an AI-enabled solution based on a selected use case.
Format of the Course
- Interactive lecture and discussion.
- Group-based exercises and project work.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Developing Intelligent Bots with Azure
14 UrenDe Azure Bot Service combineert de kracht van het Microsoft Bot Framework en Azure functies om een snelle ontwikkeling van intelligente bots mogelijk te maken.
In deze door een instructeur geleide live training leren deelnemers hoe ze eenvoudig een intelligente bot kunnen maken met behulp van Microsoft Azure
Aan het einde van deze training kunnen deelnemers:
- Learn the fundamentals of intelligent bots
- Learn how to create intelligent bots using cloud applications
- Understand how to use the Microsoft Bot Framework, the Bot Builder SDK, and the Azure Bot Service
- Understand how to design bots using bot patterns
- Develop their first intelligent bot using Microsoft Azure
Publiek
- Developers
- Hobbyists
- Engineers
- IT Professionals
Formaat van de cursus
- Part lecture, part discussion, exercises and heavy hands-on practice
Developing a Bot
14 UrenEen bot of chatbot is een soort computerassistent die wordt gebruikt om gebruikersinteracties op verschillende berichtenplatforms te automatiseren en dingen sneller gedaan te krijgen zonder dat gebruikers met een ander mens hoeven te praten.
In deze door een instructeur geleide, live training leren deelnemers hoe ze aan de slag kunnen gaan met het ontwikkelen van een bot terwijl ze stap voor stap het maken van voorbeeldchatbots doorlopen met behulp van botontwikkeltools en -frameworks.
Aan het einde van deze training kunnen deelnemers:
- Begrijp de verschillende toepassingen en toepassingen van bots
- Begrijp het volledige proces bij het ontwikkelen van bots
- Ontdek de verschillende tools en platforms die worden gebruikt bij het bouwen van bots
- Bouw een voorbeeldchatbot voor Facebook Messenger
- Bouw een voorbeeldchatbot met behulp van Microsoft Bot Framework
Publiek
- Ontwikkelaars die geïnteresseerd zijn in het maken van hun eigen bot
Vorm van de cursus
- Deels hoorcollege, deels discussie, oefeningen en zware praktijkoefeningen
Building Digital Twins with AI and Real-Time Data
21 UrenDigital Twins are virtual replicas of physical systems enhanced by real-time data and AI-driven intelligence.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to build, deploy, and optimize digital twin models using real-time data and AI-based insights.
By the end of this training, participants will be able to:
- Understand the architecture and components of digital twins.
- Use simulation tools to model complex systems and environments.
- Integrate real-time data streams into virtual models.
- Apply AI techniques for predictive behavior and anomaly detection.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level
21 UrenEdge AI is the deployment of artificial intelligence models directly on devices and machines at the edge of the network, enabling real-time decision-making with minimal latency.
This instructor-led, live training (online or onsite) is aimed at advanced-level embedded and IoT professionals who wish to deploy AI-powered logic and control systems in manufacturing environments where speed, reliability, and offline operation are critical.
By the end of this training, participants will be able to:
- Understand the architecture and benefits of edge AI systems.
- Build and optimize AI models for deployment on embedded devices.
- Use tools like TensorFlow Lite and OpenVINO for low-latency inference.
- Integrate edge intelligence with sensors, actuators, and industrial protocols.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Industrial Computer Vision with AI: Defect Detection and Visual Inspection
14 UrenIndustrial computer vision with AI is transforming how manufacturers and QA teams detect surface defects, verify part conformity, and automate visual inspection processes.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level QA teams, automation engineers, and developers who wish to design and implement computer vision systems for defect detection and inspection using AI techniques.
By the end of this training, participants will be able to:
- Understand the architecture and components of industrial vision systems.
- Build AI models for visual defect detection using deep learning.
- Integrate real-time inspection pipelines with industrial cameras and devices.
- Deploy and optimize AI-powered inspection systems for production environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Artificial Intelligence (AI) for Mechatronics
21 UrenDeze live training onder leiding van een instructeur in België (online of ter plaatse) is bedoeld voor ingenieurs die meer willen weten over de toepasbaarheid van kunstmatige intelligentie op mechatronische systemen.
Aan het einde van deze training zijn de deelnemers in staat om:
- Krijg een overzicht van kunstmatige intelligentie, machine learning en computationele intelligentie.
- Begrijp de concepten van neurale netwerken en verschillende leermethoden.
- Kies effectief voor kunstmatige-intelligentiebenaderingen voor problemen uit het echte leven.
- Implementeer AI-toepassingen in mechatronische engineering.
Physical AI for Robotics and Automation
21 UrenDeze live training onder leiding van een instructeur in België (online of ter plaatse) is bedoeld voor deelnemers van gemiddeld niveau die hun vaardigheden willen verbeteren in het ontwerpen, programmeren en implementeren van intelligente robotsystemen voor automatisering en daarbuiten.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp de principes van Physical AI en de toepassingen ervan in robotica en automatisering.
- Ontwerp en programmeer intelligente robotsystemen voor dynamische omgevingen.
- Implementeer AI-modellen voor autonome besluitvorming in robots.
- Maak gebruik van simulatietools voor het testen en optimaliseren van robots.
- Pak uitdagingen aan zoals sensorfusie, real-time verwerking en energie-efficiëntie.
Smart Robots for Developers
84 UrenEen slimme robot is een Artificial Intelligence (AI) systeem dat kan leren van zijn omgeving en zijn ervaring en op basis van die kennis kan voortbouwen op zijn capaciteiten. Smart Robots kan samenwerken met mensen, naast hen werken en leren van hun gedrag. Bovendien hebben ze de capaciteit om niet alleen handenarbeid te verrichten, maar ook cognitieve taken. Naast fysieke robots kunnen Smart Robots ook puur op software gebaseerd zijn, die zich in een computer bevinden als een softwaretoepassing zonder bewegende delen of fysieke interactie met de wereld.
In deze door een instructeur geleide, live training leren deelnemers de verschillende technologieën, frameworks en technieken voor het programmeren van verschillende soorten mechanische Smart Robots en passen ze deze kennis vervolgens toe om hun eigen Smart Robot-projecten te voltooien.
De cursus is verdeeld in 4 secties, elk bestaande uit drie dagen lezingen, discussies en hands-on robotontwikkeling in een live lab-omgeving. Elk onderdeel wordt afgesloten met een praktisch hands-on project om de deelnemers in staat te stellen hun opgedane kennis te oefenen en te demonstreren.
De doelhardware voor deze cursus wordt in 3D gesimuleerd door middel van simulatiesoftware. Het ROS (Robot Operating System) open-source framework, C++ en Python zullen worden gebruikt voor het programmeren van de robots.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp de belangrijkste concepten die worden gebruikt in robottechnologieën
- Begrijp en beheer de interactie tussen software en hardware in een robotsysteem
- Begrijp en implementeer de softwarecomponenten die ten grondslag liggen aan Smart Robots
- Bouw en bedien een gesimuleerde mechanische slimme robot die mensen via spraak kan zien, voelen, verwerken, vastpakken, navigeren en ermee kan communiceren
- Breid het vermogen van een slimme robot uit om complexe taken uit te voeren door middel van Deep Learning
- Test en los problemen op met een slimme robot in realistische scenario's
Audiëntie
- Ontwikkelaars
- Ingenieurs
Vorm van de cursus
- Deels lezing, deels discussie, oefeningen en zware hands-on oefening
Notitie
- Neem contact met ons op om een onderdeel van deze cursus aan te passen (programmeertaal, robotmodel, enz.) om dit te regelen.