Plan du cours
Foundations of MLOps on Kubernetes
- Core concepts of MLOps
- MLOps vs traditional DevOps
- Key challenges of ML lifecycle management
Containerizing ML Workloads
- Packaging models and training code
- Optimizing container images for ML
- Managing dependencies and reproducibility
CI/CD for Machine Learning
- Structuring ML repositories for automation
- Integrating testing and validation steps
- Triggering pipelines for retraining and updates
GitOps for Model Deployment
- GitOps principles and workflows
- Using Argo CD for model deployment
- Version control of models and configurations
Pipeline Orchestration on Kubernetes
- Building pipelines with Tekton
- Managing multi-step ML workflows
- Scheduling and resource management
Monitoring, Logging, and Rollback Strategies
- Tracking data drift and model performance
- Integrating alerting and observability
- Rollback and failover approaches
Automated Retraining and Continuous Improvement
- Designing feedback loops
- Automating scheduled retraining
- Integrating MLflow for tracking and experiment management
Advanced MLOps Architectures
- Multi-cluster and hybrid-cloud deployment models
- Scaling teams with shared infrastructure
- Security and compliance considerations
Summary and Next Steps
Pré requis
- An understanding of Kubernetes fundamentals
- Experience with machine learning workflows
- Knowledge of Git-based development
Audience
- ML engineers
- DevOps engineers
- ML platform teams
Nos clients témoignent (4)
il a été patient et a compris que nous prenions du retard
Albertina - REGNOLOGY ROMANIA S.R.L.
Formation - Deploying Kubernetes Applications with Helm
Traduction automatique
l'écosystème ML comprend non seulement MLFlow mais aussi Optuna, hyperops, docker et docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Formation - MLflow
Traduction automatique
La qualité des explications, et le nombre important de sujets abordés
Hugo SECHIER - Expleo France
Formation - Kubeflow on AWS
J'ai apprécié de participer à la formation Kubeflow, qui s'est déroulée en ligne. Cette formation m'a permis de consolider mes connaissances sur les services AWS, K8s et tous les outils DevOps associés à Kubeflow, qui sont les bases nécessaires pour aborder correctement le sujet. Je tiens à remercier Malawski Marcin pour sa patience et son professionnalisme dans la formation et ses conseils sur les meilleures pratiques. Malawskiaborde le sujet sous différents angles, avec divers outils de déploiement Ansible, EKS kubectl, Terraform. Maintenant, je suis définitivement convaincu que je m'oriente vers le bon domaine d'application.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Formation - Kubeflow
Traduction automatique