Merci d'avoir envoyé votre demande ! Un membre de notre équipe vous contactera sous peu.
Merci d'avoir envoyé votre réservation ! Un membre de notre équipe vous contactera sous peu.
Plan du cours
Introduction to Google AI Studio
- Core features and capabilities
- Understanding workflow components
- Exploring the Google AI model ecosystem
Designing AI Workflows
- Structuring end-to-end workflows
- Choosing components for automation
- Managing inputs, outputs, and parameters
Model Integration and API Usage
- Connecting AI Studio with Google AI APIs
- Integrating custom and third-party models
- Building reusable components
Testing and Validation
- Creating test scenarios
- Validating workflow reliability
- Debugging model interactions
Performance Optimization
- Improving response speed and efficiency
- Managing resource usage
- Scaling workflows for production
Security and Compliance
- Access control and user management
- Data protection principles
- Ensuring secure API communication
Monitoring and Maintenance
- Monitoring workflow performance
- Logging and analytics
- Lifecycle management for deployed workflows
Extending AI Studio Workflows
- Integrating with external tools
- Automating with cloud functions
- Enhancing functionality using third-party services
Summary and Next Steps
Pré requis
- An understanding of AI model development workflows
- Experience with cloud-based tools or platforms
- Familiarity with prompt engineering concepts
Audience
- AI operations teams
- DevOps professionals
- System administrators
14 Heures