Formation Domain-Specific Fine-Tuning for Finance
La spécificité du domaine Fine-Tuning est le processus d'adaptation des modèles d'IA pré-entraînés pour répondre aux exigences et aux défis uniques d'un secteur spécifique. Dans le contexte de la finance, cela permet de développer des solutions d'IA adaptées à des tâches telles que la détection des fraudes, l'analyse des risques et les conseils financiers automatisés. Ce cours aborde les défis uniques liés au travail avec des données financières, y compris la conformité réglementaire, l'IA éthique et la sécurité des données.
Cette formation en direct avec instructeur (en ligne ou sur site) s'adresse aux professionnels de niveau intermédiaire qui souhaitent acquérir des compétences pratiques dans la personnalisation des modèles d'IA pour les tâches financières critiques.
À l'issue de cette formation, les participants seront en mesure de :
- Comprendre les principes fondamentaux de la mise au point pour les applications financières.
- Exploiter des modèles pré-entraînés pour des tâches spécifiques au domaine de la finance.
- Appliquer des techniques de détection des fraudes, d'évaluation des risques et de génération de conseils financiers.
- Assurer la conformité avec les réglementations financières telles que GDPR et SOX.
- Mettre en œuvre la sécurité des données et les pratiques éthiques de l'IA dans les applications financières.
Format du cours
- Exposé et discussion interactifs.
- Beaucoup d'exercices et de pratique.
- Mise en œuvre pratique dans un environnement live-lab.
Options de personnalisation du cours
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter.
Plan du cours
Introduction au domaine spécifique Fine-Tuning
- Aperçu des techniques de réglage fin
- Défis dans le domaine financier
- Études de cas de l'IA dans la finance
Modèles pré-entraînés pour les applications financières
- Introduction aux modèles pré-entraînés les plus répandus (par exemple, GPT, BERT)
- Sélection de modèles appropriés pour les tâches financières
- Préparation des données pour un réglage fin en finance
Fine-Tuning pour les tâches financières clés
- Détection des fraudes à l'aide de modèles d'apprentissage automatique
- Évaluation des risques à l'aide de modèles prédictifs
- Création de systèmes automatisés de conseil financier
Relever les défis liés aux données financières
- Traitement des données sensibles et déséquilibrées
- Garantir la confidentialité et la sécurité des données
- Intégrer les réglementations financières dans les flux de travail de l'IA
Considérations éthiques et réglementaires
- Pratiques éthiques en matière d'IA dans le secteur financier
- Conformité avec GDPR et SOX
- Maintien de la transparence dans les modèles d'IA
Mise à l'échelle et déploiement des modèles
- Optimisation des modèles pour le déploiement en production
- Suivi et maintien des performances des modèles
- Meilleures pratiques pour l'évolutivité des applications financières
Applications réelles et études de cas
- Systèmes de détection des fraudes
- Modélisation du risque pour les portefeuilles d'investissement
- Service client alimenté par l'IA dans le secteur financier
Résumé et prochaines étapes
Pré requis
- Compréhension de base de l'apprentissage automatique
- Familiarité avec la programmation Python.
- Connaissance des concepts et de la terminologie financière
Audience
- Analystes financiers
- Professionnels de l'IA en finance
Les formations ouvertes requièrent plus de 3 participants.
Formation Domain-Specific Fine-Tuning for Finance - Booking
Formation Domain-Specific Fine-Tuning for Finance - Enquiry
Domain-Specific Fine-Tuning for Finance - Demande d'informations consulting
Demande d'informations consulting
Cours à venir
Cours Similaires
Advanced Techniques in Transfer Learning
14 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur site) est destinée aux professionnels de l'apprentissage automatique de niveau avancé qui souhaitent maîtriser les techniques de pointe de l'apprentissage par transfert et les appliquer à des problèmes complexes du monde réel.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les concepts et méthodologies avancés de l'apprentissage par transfert.
- Mettre en œuvre des techniques d'adaptation spécifiques à un domaine pour les modèles pré-entraînés.
- Appliquer l'apprentissage continu pour gérer des tâches et des ensembles de données en constante évolution.
- Maîtriser le réglage fin multi-tâches pour améliorer les performances des modèles à travers les tâches.
Deploying Fine-Tuned Models in Production
21 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur place) est destinée aux professionnels de niveau avancé qui souhaitent déployer des modèles affinés de manière fiable et efficace.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les défis liés au déploiement de modèles finement ajustés en production.
- Conteneuriser et déployer des modèles en utilisant des outils comme Docker et Kubernetes.
- Mettre en œuvre la surveillance et la journalisation pour les modèles déployés.
- Optimiser les modèles pour la latence et l'extensibilité dans des scénarios réels.
Fine-Tuning Models and Large Language Models (LLMs)
14 HeuresCette formation en direct avec instructeur dans Belgique (en ligne ou sur site) est destinée aux professionnels de niveau intermédiaire à avancé qui souhaitent personnaliser des modèles pré-entraînés pour des tâches et des ensembles de données spécifiques.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes du réglage fin et ses applications.
- Préparer des ensembles de données pour affiner les modèles pré-entraînés.
- Affiner les grands modèles de langage (LLM) pour les tâches de NLP.
- Optimiser les performances des modèles et relever les défis les plus courants.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HeuresCette formation en Belgique (en ligne ou sur site) s'adresse aux développeurs de niveau intermédiaire et aux praticiens de l'IA qui souhaitent mettre en œuvre des stratégies de réglage fin pour de grands modèles sans avoir besoin de ressources informatiques considérables.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes de l'adaptation de faible rang (LoRA).
- Mettre en œuvre la LoRA pour un réglage fin efficace des grands modèles.
- Optimiser le réglage fin pour les environnements à ressources limitées.
- Évaluer et déployer des modèles ajustés par LoRA pour des applications pratiques.
Fine-Tuning Multimodal Models
28 HeuresCette formation en direct dans Belgique (en ligne ou sur site) est destinée aux professionnels de niveau avancé qui souhaitent maîtriser la mise au point de modèles multimodaux pour des solutions innovantes en matière d'IA.
A l'issue de cette formation, les participants seront capables de :
- Comprendre l'architecture des modèles multimodaux tels que CLIP et Flamingo.
- Préparer et prétraiter efficacement des ensembles de données multimodales.
- Affiner les modèles multimodaux pour des tâches spécifiques.
- Optimiser les modèles pour des applications et des performances réelles.
Fine-Tuning for Natural Language Processing (NLP)
21 HeuresCette formation en Belgique (en ligne ou sur site) s'adresse aux professionnels de niveau intermédiaire qui souhaitent améliorer leurs projets NLP en affinant efficacement les modèles de langage pré-entraînés.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes fondamentaux de la mise au point pour les tâches de TAL.
- Affiner les modèles pré-entraînés tels que GPT, BERT, et T5 pour des applications NLP spécifiques.
- Optimiser les hyperparamètres pour améliorer les performances des modèles.
- Évaluer et déployer des modèles affinés dans des scénarios réels.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HeuresCette formation en Belgique (en ligne ou sur site) s'adresse aux chercheurs en IA de niveau avancé, aux ingénieurs en apprentissage automatique et aux développeurs qui souhaitent affiner les modèles DeepSeek LLM pour créer des applications d'IA spécialisées adaptées à des industries, des domaines ou des besoins commerciaux spécifiques.
A la fin de cette formation, les participants seront capables de :
- Comprendre l'architecture et les capacités des modèles DeepSeek, y compris DeepSeek-R1 et DeepSeek-V3.
- Préparer les ensembles de données et prétraiter les données pour le réglage fin.
- Affiner le DeepSeek LLM pour des applications spécifiques à un domaine.
- Optimiser et déployer efficacement les modèles affinés.
Fine-Tuning Large Language Models Using QLoRA
14 HeuresCette formation en direct, animée par un formateur (en ligne ou sur site), s'adresse aux ingénieurs intermédiaires et avancés en apprentissage automatique, développeurs IA et scientifiques des données qui souhaitent apprendre à utiliser QLoRA pour ajuster efficacement de grands modèles à des tâches spécifiques et des personnalisations.
À la fin de cette formation, les participants seront capables de :
- Comprendre la théorie derrière QLoRA et les techniques de quantification pour les LLM (Large Language Models).
- Mettre en œuvre QLoRA pour l'ajustement fin de grands modèles de langage dans des applications spécifiques à un domaine.
- Optimiser la performance de l'ajustement fin sur des ressources informatiques limitées en utilisant la quantification.
- Déployer et évaluer efficacement les modèles ajustés fin dans des applications du monde réel.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 HeuresCette formation en direct, animée par un formateur (en ligne ou sur site) s'adresse aux praticiens intermédiaires de l'apprentissage machine et aux développeurs IA qui souhaitent affiner et déployer des modèles à poids ouverts comme LLaMA, Mistral et Qwen pour des applications spécifiques d'affaires ou internes.
À la fin de cette formation, les participants seront capables de :
- Comprendre l'écosystème et les différences entre les modèles LLM open source.
- Préparer des jeux de données et des configurations d'affinement pour des modèles comme LLaMA, Mistral et Qwen.
- Exécuter des pipelines d'affinement en utilisant Hugging Face Transformers et PEFT.
- Évaluer, sauvegarder et déployer des modèles affinés dans des environnements sécurisés.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 HeuresCette formation en direct, animée par un formateur dans Belgique (en ligne ou sur site), s'adresse aux ingénieurs de haut niveau en apprentissage automatique et aux chercheurs en IA qui souhaitent appliquer la RLHF pour affiner les grands modèles d'IA afin d'améliorer leurs performances, leur sécurité et leur alignement.
À l'issue de cette formation, les participants seront capables de :
- Comprendre les fondements théoriques de la RLHF et pourquoi elle est essentielle dans le développement moderne de l'IA.
- Mettre en œuvre des modèles de récompense basés sur les retours humains pour guider les processus d'apprentissage par renforcement.
- Affiner les grands modèles de langage en utilisant des techniques de RLHF pour aligner leurs sorties avec les préférences humaines.
- Appliquer les meilleures pratiques pour échelonner les workflows de la RLHF pour les systèmes d'IA de production.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur site) est destinée aux professionnels de niveau avancé qui souhaitent maîtriser les techniques d'optimisation de grands modèles pour un réglage fin rentable dans des scénarios du monde réel.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les défis liés à la mise au point de grands modèles.
- Appliquer les techniques de formation distribuée aux grands modèles.
- Tirer parti de la quantification et de l'élagage des modèles pour plus d'efficacité.
- Optimiser l'utilisation du matériel pour les tâches de réglage fin.
- Déployer efficacement des modèles affinés dans des environnements de production.
Prompt Engineering and Few-Shot Fine-Tuning
14 HeuresCette formation en direct avec instructeur dans Belgique (en ligne ou sur site) est destinée aux professionnels de niveau intermédiaire qui souhaitent tirer parti de la puissance de l'ingénierie rapide et de l'apprentissage à court terme afin d'optimiser les performances du LLM pour des applications du monde réel.
A l'issue de cette formation, les participants seront en mesure de :
- Comprendre les principes de l'ingénierie des messages-guides et de l'apprentissage à court terme.
- Concevoir des messages-guides efficaces pour diverses tâches NLP.
- Tirer parti des techniques d'apprentissage à court terme pour adapter les LLM avec un minimum de données.
- Optimiser les performances des LLM pour des applications pratiques.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 HeuresCette formation en direct, animée par un formateur (en ligne ou sur site) est destinée aux scientifiques des données et ingénieurs IA de niveau intermédiaire qui souhaitent affiner les grands modèles de langage de manière plus abordable et efficace en utilisant des méthodes comme LoRA, Adapter Tuning et Prefix Tuning.
À la fin de cette formation, les participants seront capables de :
- Comprendre la théorie derrière les approches d'affinement paramétrique efficace.
- Mettre en œuvre LoRA, Adapter Tuning et Prefix Tuning à l'aide de Hugging Face PEFT.
- Comparer les avantages et inconvénients en termes de performance et de coût des méthodes PEFT par rapport à un affinement complet.
- Déployer et échelonner les modèles de langage affinés avec une réduction des besoins en calcul et en stockage.
Introduction to Transfer Learning
14 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur site) s'adresse aux professionnels de l'apprentissage automatique de niveau débutant à intermédiaire qui souhaitent comprendre et appliquer les techniques d'apprentissage par transfert pour améliorer l'efficacité et la performance des projets d'IA.
A l'issue de cette formation, les participants seront en mesure de :
- Comprendre les concepts fondamentaux et les avantages de l'apprentissage par transfert.
- Explorer les modèles pré-entraînés populaires et leurs applications.
- Effectuer un réglage fin des modèles pré-entraînés pour des tâches personnalisées.
- Appliquer l'apprentissage par transfert pour résoudre des problèmes réels en NLP et en vision par ordinateur.
Troubleshooting Fine-Tuning Challenges
14 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur site) est destinée aux professionnels de niveau avancé qui souhaitent affiner leurs compétences en matière de diagnostic et de résolution des problèmes de réglage fin pour les modèles d'apprentissage automatique.
A l'issue de cette formation, les participants seront capables de :
- Diagnostiquer des problèmes tels que l'overfitting, l'underfitting et le déséquilibre des données.
- Mettre en œuvre des stratégies pour améliorer la convergence des modèles.
- Optimiser les pipelines de réglage fin pour de meilleures performances.
- Déboguer les processus de formation à l'aide d'outils et de techniques pratiques.