Fine-Tuning Legal AI Models: Contract Review and Legal Research Training Cursus
Fine-tuning is the process of adapting pre-trained NLP models to specialized domains such as law and legal documentation.
This instructor-led, live training (online or onsite) is aimed at intermediate-level legal tech engineers and AI developers who wish to fine-tune language models for tasks like contract analysis, clause extraction, and automated legal research in legal service environments.
By the end of this training, participants will be able to:
- Prepare and clean legal documents for fine-tuning NLP models.
- Apply fine-tuning strategies to improve model accuracy on legal tasks.
- Deploy models to assist with contract review, classification, and research.
- Ensure compliance, auditability, and traceability of AI outputs in legal contexts.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Cursusaanbod
Introduction to Legal AI and Fine-Tuning
- Overview of legal tech and its evolution
- Applications of NLP in law: contracts, case law, compliance
- Benefits and limitations of using pre-trained models in legal domains
Preparing Legal Data for Fine-Tuning
- Types of legal documents: contracts, terms, case law, statutes
- Text cleaning, segmentation, and clause extraction
- Annotating legal data for supervised learning
Fine-Tuning NLP Models for Legal Tasks
- Choosing a pre-trained model: BERT, LegalBERT, RoBERTa, etc.
- Setting up a fine-tuning pipeline with Hugging Face
- Training on legal classification and extraction tasks
Contract Review Automation
- Detecting clause types and obligations
- Highlighting risk terms and compliance issues
- Summarizing long contracts for quick review
Legal Research Assistance with AI
- Information retrieval and ranking for case law
- Question answering on statutes and regulations
- Building a legal document chatbot or assistant
Evaluation and Interpretability
- Metrics: F1, precision, recall, accuracy
- Model explainability in high-stakes legal contexts
- Tools for clause-level confidence scoring and auditing
Deployment and Integration
- Embedding models in legal research platforms or review tools
- APIs and interface considerations for law firm use
- Maintaining privacy, version control, and update workflows
Summary and Next Steps
Vereisten
- An understanding of natural language processing fundamentals
- Experience with Python and machine learning libraries such as Hugging Face Transformers
- Familiarity with legal texts and basic legal document structures
Audience
- Legal tech engineers
- AI developers for law firms
- Machine learning professionals working with legal data
Voor open trainingen is een minimum aantal van 5 deelnemers vereist
Fine-Tuning Legal AI Models: Contract Review and Legal Research Training Cursus - Booking
Fine-Tuning Legal AI Models: Contract Review and Legal Research Training Cursus - Enquiry
Fine-Tuning Legal AI Models: Contract Review and Legal Research - Consultancyaanvraag
Consultancyaanvraag
Voorlopige Aankomende Cursussen
Gerelateerde cursussen
Advanced Techniques in Transfer Learning
14 UrenDeze live training onder leiding van een instructeur in België (online of ter plaatse) is gericht op professionals op het gebied van machine learning op gevorderd niveau die geavanceerde transferleertechnieken onder de knie willen krijgen en deze willen toepassen op complexe problemen uit de echte wereld.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp geavanceerde concepten en methodologieën op het gebied van transfer learning.
- Implementeer domeinspecifieke aanpassingstechnieken voor vooraf getrainde modellen.
- Pas continu leren toe om evoluerende taken en datasets te beheren.
- Beheers de fijnafstelling van meerdere taken om de prestaties van het model in alle taken te verbeteren.
Continual Learning and Model Update Strategies for Fine-Tuned Models
14 UrenDeze door een instructeur gegeven, live training in België (online of op locatie) is gericht op AI-onderhoudsingenieurs op gevorderd niveau en MLOps professionals die robuuste continu-inlerende pijplijnen en effectieve update-strategieën willen implementeren voor ingezette, verfijnde modellen.
Aan het einde van deze training kunnen de deelnemers:
- Continu-inlerende workflows ontwerpen en implementeren voor ingezette modellen.
- Catastrofaal vergeten tegengaan door juiste training en geheugenbeheer.
- Monitoring en update-triggers automatiseren op basis van model-drift of wijzigingen in de data.
- Model-update-strategieën integreren in bestaande CI/CD- en MLOps pijplijnen.
Deploying Fine-Tuned Models in Production
21 UrenDeze live training onder leiding van een instructeur in België (online of ter plaatse) is bedoeld voor professionals op gevorderd niveau die op betrouwbare en efficiënte wijze verfijnde modellen willen inzetten.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp de uitdagingen van het implementeren van nauwkeurig afgestemde modellen in productie.
- Modellen in containers plaatsen en implementeren met behulp van hulpprogramma's zoals Docker en Kubernetes.
- Implementeer bewaking en logboekregistratie voor geïmplementeerde modellen.
- Optimaliseer modellen voor latentie en schaalbaarheid in real-world scenario's.
Domain-Specific Fine-Tuning for Finance
21 UrenDeze live training onder leiding van een instructeur in België (online of ter plaatse) is bedoeld voor professionals van gemiddeld niveau die praktische vaardigheden willen opdoen in het aanpassen van AI-modellen voor kritieke financiële taken.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp de basisprincipes van fine-tuning voor financiële toepassingen.
- Maak gebruik van vooraf getrainde modellen voor domeinspecifieke taken in de financiële sector.
- Pas technieken toe voor het opsporen van fraude, risicobeoordeling en het genereren van financieel advies.
- Zorg voor naleving van financiële regelgeving zoals GDPR en SOX.
- Implementeer gegevensbeveiliging en ethische AI-praktijken in financiële toepassingen.
Fine-Tuning Models and Large Language Models (LLMs)
14 UrenDeze live training onder leiding van een instructeur in België (online of ter plaatse) is gericht op professionals van gemiddeld tot gevorderd niveau die vooraf getrainde modellen willen aanpassen voor specifieke taken en datasets.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp de principes van fine-tuning en de toepassingen ervan.
- Bereid gegevenssets voor op het verfijnen van vooraf getrainde modellen.
- Verfijn grote taalmodellen (LLM's) voor NLP-taken.
- Optimaliseer de prestaties van modellen en pak veelvoorkomende uitdagingen aan.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 UrenDeze live training onder leiding van een instructeur in België (online of ter plaatse) is bedoeld voor ontwikkelaars van gemiddeld niveau en AI-beoefenaars die fine-tuningstrategieën voor grote modellen willen implementeren zonder dat er uitgebreide rekenbronnen nodig zijn.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp de principes van Low-Rank Adaptation (LoRA).
- Implementeer LoRA voor efficiënte fijnafstelling van grote modellen.
- Optimaliseer de fijnafstelling voor omgevingen met beperkte bronnen.
- Evalueer en implementeer LoRA-afgestemde modellen voor praktische toepassingen.
Fine-Tuning Multimodal Models
28 UrenDeze live training onder leiding van een instructeur in België (online of ter plaatse) is bedoeld voor professionals op gevorderd niveau die multimodale modelafstemming voor innovatieve AI-oplossingen onder de knie willen krijgen.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp de architectuur van multimodale modellen zoals CLIP en Flamingo.
- Multimodale datasets effectief voorbereiden en voorverwerken.
- Verfijn multimodale modellen voor specifieke taken.
- Optimaliseer modellen voor toepassingen en prestaties in de echte wereld.
Fine-Tuning for Natural Language Processing (NLP)
21 UrenDeze door een instructeur geleide, live training in België (online of ter plaatse) is gericht op professionals van gemiddeld niveau die hun NLP-projecten willen verbeteren door de effectieve afstemming van vooraf getrainde taalmodellen.
Aan het einde van deze training zijn de deelnemers in staat om:
- Begrijp de basisprincipes van fine-tuning voor NLP-taken.
- Verfijn vooraf getrainde modellen zoals GPT, BERT en T5 voor specifieke NLP-toepassingen.
- Optimaliseer hyperparameters voor verbeterde modelprestaties.
- Evalueer en implementeer nauwkeurig afgestemde modellen in real-world scenario's.
Fine-Tuning AI for Financial Services: Risk Prediction and Fraud Detection
14 UrenThis instructor-led, live training in België (online or onsite) is aimed at advanced-level data scientists and AI engineers in the financial sector who wish to fine-tune models for applications such as credit scoring, fraud detection, and risk modeling using domain-specific financial data.
By the end of this training, participants will be able to:
- Fine-tune AI models on financial datasets for improved fraud and risk prediction.
- Apply techniques such as transfer learning, LoRA, and regularization to enhance model efficiency.
- Integrate financial compliance considerations into the AI modeling workflow.
- Deploy fine-tuned models for production use in financial services platforms.
Fine-Tuning AI for Healthcare: Medical Diagnosis and Predictive Analytics
14 UrenThis instructor-led, live training in België (online or onsite) is aimed at intermediate-level to advanced-level medical AI developers and data scientists who wish to fine-tune models for clinical diagnosis, disease prediction, and patient outcome forecasting using structured and unstructured medical data.
By the end of this training, participants will be able to:
- Fine-tune AI models on healthcare datasets including EMRs, imaging, and time-series data.
- Apply transfer learning, domain adaptation, and model compression in medical contexts.
- Address privacy, bias, and regulatory compliance in model development.
- Deploy and monitor fine-tuned models in real-world healthcare environments.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 UrenDeze door een instructeur geleide, live training in België (online of onsite) is bedoeld voor AI-onderzoekers op gevorderd niveau, machine learning-engineers en ontwikkelaars die DeepSeek LLM-modellen willen afstemmen om gespecialiseerde AI-toepassingen te creëren die zijn afgestemd op specifieke bedrijfstakken, domeinen of zakelijke behoeften.
Aan het einde van deze training zullen de deelnemers in staat zijn om:
- de architectuur en mogelijkheden van DeepSeek modellen te begrijpen, inclusief DeepSeek-R1 en DeepSeek-V3.
- gegevenssets voor te bereiden en gegevens voor te bereiden voor fine-tuning.
- DeepSeek LLM af te stemmen voor domeinspecifieke toepassingen.
- Fijn afgestemde modellen efficiënt te optimaliseren en in te zetten.
Fine-Tuning Defense AI for Autonomous Systems and Surveillance
14 UrenThis instructor-led, live training in België (online or onsite) is aimed at advanced-level defense AI engineers and military technology developers who wish to fine-tune deep learning models for use in autonomous vehicles, drones, and surveillance systems while meeting stringent security and reliability standards.
By the end of this training, participants will be able to:
- Fine-tune computer vision and sensor fusion models for surveillance and targeting tasks.
- Adapt autonomous AI systems to changing environments and mission profiles.
- Implement robust validation and fail-safe mechanisms in model pipelines.
- Ensure alignment with defense-specific compliance, safety, and security standards.
Fine-Tuning Large Language Models Using QLoRA
14 UrenDeze instructeurgeleide live training in België (online of op locatie) is gericht op machine learning engineers, AI-ontwikkelaars en datawetenschappers op intermiddelair tot geavanceerd niveau die willen leren hoe ze QLoRA kunnen gebruiken om grote modellen efficiënt af te stemmen op specifieke taken en aanpassingen.
Na voltooiing van deze training zullen de deelnemers in staat zijn om:
- De theorie achter QLoRA en kwantisatietechnieken voor LLMs te begrijpen.
- QLoRA te implementeren bij het afstemmen van grote taalmodellen voor domeinspecifieke toepassingen.
- De prestaties van het afstemmen te optimaliseren op beperkte computatiebronnen door middel van kwantisering.
- Afgestemde modellen efficiënt te implementeren en te evalueren in real-world toepassingen.
Fine-Tuning Lightweight Models for Edge AI Deployment
14 UrenDeze door een instructeur geleide live training in België (online of ter plaatse) is bedoeld voor gemiddeld geavanceerde embedded AI-ontwikkelaars en edge computing-specialisten die lichte AI-modellen willen verfijnen en optimaliseren voor implementatie op apparaten met beperkte middelen.
Na afloop van deze training kunnen de deelnemers:
- Pre-getrainde modellen selecteren en aanpassen die geschikt zijn voor edge-deployments.
- Quantization, pruning en andere compressietechnieken toepassen om de grootte en latentie van het model te verminderen.
- Modellen verfijnen met behulp van transfer learning voor taak-specifieke prestaties.
- Optimaliseerde modellen implementeren op echte edge hardwareplatforms.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 UrenDeze door een instructeur geleide, live training in België (online of op locatie) is bedoeld voor ML-praktijkers en AI-ontwikkelaars op intermediair niveau die open-weight-modellen zoals LLaMA, Mistral, en Qwen willen afstemmen en implementeren voor specifieke bedrijfs- of interne toepassingen.
Na afloop van deze training zullen de deelnemers in staat zijn om:
- Het ecosysteem en de verschillen tussen open-source LLMs te begrijpen.
- Datasets en afstemmingsconfiguraties voor te bereiden voor modellen zoals LLaMA, Mistral, en Qwen.
- Afstemmingspipelines uit te voeren met behulp van Hugging Face Transformers en PEFT.
- Afgestemde modellen te evalueren, op te slaan en in veilige omgevingen te implementeren.