Bedankt voor uw aanvraag! Een van onze medewerkers neemt binnenkort contact met u op
Bedankt voor uw boeking! Een van onze medewerkers neemt binnenkort contact met u op.
Cursusaanbod
Overview of CANN Optimization Capabilities
- How inference performance is handled in CANN
- Optimization goals for edge and embedded AI systems
- Understanding AI Core utilization and memory allocation
Using Graph Engine for Analysis
- Introduction to the Graph Engine and execution pipeline
- Visualizing operator graphs and runtime metrics
- Modifying computational graphs for optimization
Profiling Tools and Performance Metrics
- Using CANN Profiling Tool (profiler) for workload analysis
- Analyzing kernel execution time and bottlenecks
- Memory access profiling and tiling strategies
Custom Operator Development with TIK
- Overview of TIK and operator programming model
- Implementing a custom operator using TIK DSL
- Testing and benchmarking operator performance
Advanced Operator Optimization with TVM
- Intro to TVM integration with CANN
- Auto-tuning strategies for computational graphs
- When and how to switch between TVM and TIK
Memory Optimization Techniques
- Managing memory layout and buffer placement
- Techniques to reduce on-chip memory consumption
- Best practices for asynchronous execution and reuse
Real-World Deployment and Case Studies
- Case study: performance tuning for smart city camera pipeline
- Case study: optimizing autonomous vehicle inference stack
- Guidelines for iterative profiling and continuous improvement
Summary and Next Steps
Vereisten
- Strong understanding of deep learning model architectures and training workflows
- Experience with model deployment using CANN, TensorFlow, or PyTorch
- Familiarity with Linux CLI, shell scripting, and Python programming
Audience
- AI performance engineers
- Inference optimization specialists
- Developers working with edge AI or real-time systems
14 Uren